Fourier Transforms

2.2 FOURIER TRANSFORMS

- Fourier transform is the extension of Fourier series to periodic and aperiodic signals.
- The signals are expressed in terms of complex exponentials of various frequencies, but these frequencies are not discrete.
- The extension of the Fourier series to aperiodic signals can be done by extending the period to infinity.
- The signal has a continuous spectrum as opposed to a discrete spectrum.
- Assume that the Fourier series of periodic extension of the nonperiodic signal $x(t)$ exists.
- Define $x_{T}(t)$ as the truncation of $x(t)$ over

$$
\begin{aligned}
& -\frac{T}{2}<t<\frac{T}{2} \quad \text {, i.e., } \\
& \quad x_{T}(t)=\Pi\left(\frac{t}{T}\right) x(t)=\left\{\begin{array}{cc}
x(t), & -\frac{T}{2}<t<\frac{T}{2} \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

- Denote the periodic signal

$$
\bar{x}_{T}(t)=\sum_{k=-\infty}^{\infty} x_{T}(t-k T) .
$$

- Conversely, we may express the truncated signal by

$$
x_{T}(t)=\left\{\begin{array}{l}
\bar{x}_{T}(t),-\frac{T}{2} \leq t \leq \frac{T}{2} \\
0, \text { otherwise. }
\end{array}\right.
$$

- If we let the period T approach infinity, then in the limit, the periodic signal approximately becomes the aperiodic signal

$$
x(t)=\lim _{T \rightarrow \infty} x_{T}(t)=\lim _{T \rightarrow \infty} \bar{x}_{T}(t)
$$

- This periodic signal with fundamental period T has a complex exponential Fourier series that is given by

$$
\begin{gathered}
\bar{x}_{T}(t)=\sum_{n=-\infty}^{\infty} x_{n} e^{j 2 \pi n f_{0} t} \\
x_{n}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \bar{x}_{T}(t) e^{-j 2 \pi n f_{0} t} d t
\end{gathered}
$$

- As far as the integration is concerned, the integrand on this integral can be rewritten as

$$
x_{n}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \bar{x}_{T}(t) e^{-j 2 \pi n f_{0} t} d t=\frac{1}{T} \int_{-\infty}^{\infty} x_{T}(t) e^{-j 2 \pi n f_{0} t} d t
$$

- Define

$$
X_{T}(f)=\int_{-\infty}^{\infty} x_{T}(t) e^{-j 2 \pi f t} d t
$$

- We have

$$
x_{n}=\frac{1}{T} X_{T}\left(n f_{0}\right)
$$

$$
\bar{x}_{T}(t)=\sum_{n=\infty}^{\infty} \frac{1}{T} X_{T}\left(n f_{0}\right) e^{i 2 \pi \pi f_{t}}=\sum_{n=-\infty}^{\infty} X_{T}\left(n f_{0}\right) e^{i 2 \pi n f_{f_{t}}} f_{0} .
$$

$$
x(t)=\lim _{T \rightarrow \infty} \bar{x}_{T}(t)=\lim _{T \rightarrow \infty} \sum_{n=-\infty}^{\infty} X_{T}\left(n f_{0}\right) e^{j 2 \pi n f_{0} t} f_{0}
$$

$$
T \rightarrow \infty, f_{0} \rightarrow 0
$$

- The summation turns to become an integral

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

- $x(t)$ is the inverse Fourier transform of $X(f)$
- The Fourier transform of $x(t)$ is

$$
X(f)=\lim _{T \rightarrow \infty} X_{T}(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

- Definition III. Suppose that, $x(t),-\infty<t$ jsoa signal such that it is absolutely integrable, that is,

$$
\int_{-\infty}^{\infty}|x(t)| d t<\infty
$$

Then the Fourier transform of $x(t)$ s defined as

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

The inverse Fourier transform is given by

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

- Observations
- $X(f)$ is in general a complex function. The function $X(f)$ is sometimes referred to as the spectrum of the signal $x(t)$.
- To denote that $X(f)$ is the Fourier transform of $x(t)$, the following notation is frequently employed

$$
X(f)=\mathrm{F}[x(t)] .
$$

- To denote that $x(t)$ is the inverse Fourier transform of $X(f)$, the following notation is used

$$
x(t)=\mathrm{F}^{-1}[X(f)] .
$$

- Sometimes the following notation is used as a shorthand for both relations

$$
x(t) \Leftrightarrow X(f) .
$$

- The Fourier transform and the inverse Fourier transform relations can be written as

$$
\begin{aligned}
x(t) & =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\tau) e^{-j 2 \pi f \tau} d \tau\right] e^{j 2 \pi f t} d f \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} e^{j 2 \pi f(t-\tau)} d f\right] x(\tau) d \tau
\end{aligned}
$$

On the other hand,

$$
\stackrel{1 d}{x}(t)=\int_{-\infty}^{\infty} \delta(t-\tau) x(\tau) d \tau
$$

where $\delta(t)$ is the unit impulse. From above equation, we may have

$$
\delta(t-\tau)=\int_{-\infty}^{\infty} e^{j 2 \pi f(t-\tau)} d f
$$

or, in general

$$
\delta(t)=\int_{-\infty}^{\infty} e^{j 2 \pi f t} d f
$$

Hence, the spectrum of $\delta(t)$ is equal to unity over all frequencies.

Example 2.2.1: Determine the Fourier transform of the signal $\Pi(t)$.
Solution: We have

$$
\begin{aligned}
\mathrm{F}[\Pi(t)] & =\int_{-\infty}^{\infty} \Pi(t) e^{-j 2 \pi f t} d t \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} \Pi(t) e^{-j 2 \pi f t} d t \\
& =\frac{1}{-j 2 \pi f}\left[e^{-j \pi f}-e^{j \pi f}\right] \\
& =\frac{\sin (\pi f)}{\pi f} \\
& =\operatorname{sinc}(f)
\end{aligned}
$$

-The Fourier transform of $\Pi(t)$.

Figure $2.6 \quad \Pi(t)$ and its Fourier transform.

Example 2.2.2: Find the Fourier transform of the impulse signal $x(t)=\delta(t)$.
Solution: The Fourier transform can be obtained by

$$
\begin{aligned}
\mathrm{F}[\delta(t)] & =\int_{-\infty}^{\infty} \delta(t) e^{-j 2 \pi f t} d t \\
& =1 .
\end{aligned}
$$

Similarly, from the relation

$$
\int_{-\infty}^{\infty} \delta(f) e^{j 2 \pi f t} d f=1
$$

We conclude that

$$
\mathrm{F}[1]=\delta(f) .
$$

-The Fourier transform of $\delta(t)$.

Figure 2.7 Impulse signal and its spectrum.

